Culture Collections

Bacteria and Mycoplasmas detail

Conditions of Supply of Microbial Pathogens: Safety





Bacteria Collection: Morganella morganii

NCTC Number: NCTC 235
Current Name: Morganella morganii
Original Strain Reference: 33 M
Other Collection No: ATCC 8075 H; ATCC 25830; 33 M; DSM 30164; IFO 3848; M 11; MORGAN NO.1 BACILLUS; NCIB 235; WDCM 00112
Previous Catalogue Name: Morganella morganii
Type Strain: Yes
Family: Enterobacteriaceae
Hazard Group (ACDP): 2
Release Restrictions: Terms & Conditions of Supply of Microbial Pathogens: Safety
Conditions for growth on solid media: Nutrient agar, 24 hours,37°C, aerobic
Conditions for growth on liquid media: nutrient broth,37, facultative anaerobe
Isolated From: human, summer diarrhoea
Whole Genome Sequence: http://www.ebi.ac.uk/ena/data/view/ERS513125
Annotated Genome: ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000/...
16S rRNA Gene Sequence: >gb|AF500485|ATCC25830|Morganella morganii subsp. morganii strain ATCC25830 16S ribosomalRNA gene, partial sequence.| ctggtcagctagagt... >gb|AJ301681|CIPA231T (ATCC25830T)|Morganella morganii 16S rRNA gene, strain CIPA231T.| tgggtttgatcatgc...
23S rRNA Gene Sequence: >gb|AY116909|ATCC 25830|Morganella morganii strain ATCC 25830 23S ribosomal RNA gene,partial sequence.| ggttaagcgaataag...
Miscellaneous Sequence Data: >gb|AJ300548|CIP A231T| ATCC 25830T|Morganella morganii partial gyrB gene for DNA gyrase B subunitstrain CIP A231T, ATCC 25830T.| ataagttcgacgata...
Bibliography: MORGAN H DE R 1906 BR MED J 1 208
Extended Bibliography: showhide Show bibliography
Ref #: 48709
Author(s): Dauga,C.
Journal: Int J Syst Evol Microbiol
Title: Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies
Volume: 52
Page(s): 531-47
Year: 2002
Keyword(s): GENBANK/AJ300528 GENBANK/AJ300529 GENBANK/AJ300530 GENBANK/AJ300531 GENBANK/AJ300532 GENBANK/AJ300533 GENBANK/AJ300534 GENBANK/AJ300535 GENBANK/AJ300536 GENBANK/AJ300537 GENBANK/AJ300538 GENBANK/AJ300539 GENBANK/AJ300540 GENBANK/AJ300541 GENBANK/AJ300542 GENBANK/AJ300543 GENBANK/AJ300544 GENBANK/AJ300545 GENBANK/AJ300546 GENBANK/AJ300547 GENBANK/AJ300548 GENBANK/AJ300549 GENBANK/AJ300550 GENBANK/AJ300551 GENBANK/AJ300552 GENBANK/AJ300553 GENBANK/AJ300554 DNA Gyrase/*genetics Enterobacteriaceae/*classification/genetics Evolution, Molecular Genes, rRNA Molecular Sequence Data Phenotype RNA, Bacterial/chemistry RNA, Ribosomal, 16S/chemistry
Remarks: Phylogenetic trees showing the evolutionary relatedness of Enterobacteriaceae based upon gyrB and 16S rRNA genes were compared. Congruence among trees of these molecules indicates that the genomes of these species are not completely mosaic and that molecular systematic studies can be carried out. Phylogenetic trees based on gyrB sequences appeared to be more reliable at determining relationships among Serratia species than trees based on 16S rRNA gene sequences. gyrB sequences from Serratia species formed a monophyletic group validated by significant bootstrap values. Serratia fonticola had the most deeply branching gyrB sequence in the Serratia monophyletic group, which was consistent with its atypical phenotypic characteristics. Klebsiella and Enterobacter genera seemed to be polyphyletic, but the branching patterns of gyrB and 16S rRNA gene trees were not congruent. Enterobacter aerogenes was grouped with Klebsiella pneumoniae on the gyrB phylogenetic tree, which supports that this species could be transferred to the Klebsiella genus. Unfortunately, 16S rRNA and gyrB phylogenetic trees gave conflicting evolutionary relationships for Citrobacter freundii because of its unusual gyrB evolutionary process. gyrB lateral gene transfer was suspected for Hafnia alvei. Saturation of gyrB genes was observed by the pairwise comparison of Proteus spp., Providencia alcalifaciens and Morganella morganii sequences. Depending on their level of variability, 16S rRNA gene sequences were useful for describing phylogenetic relationships between distantly related Enterobacteriaceae, whereas gyrB sequence comparison was useful for inferring intra- and some intergeneric relationships.
URL: 11931166
Ref #: 13697
Author(s): Dauga,C.
Journal: Int J Syst Evol Microbiol
Title: Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies
Volume: 52
Page(s): 531-47
Year: 2002
Keyword(s): GENBANK/AJ300528 GENBANK/AJ300529 GENBANK/AJ300530 GENBANK/AJ300531 GENBANK/AJ300532 GENBANK/AJ300533 GENBANK/AJ300534 GENBANK/AJ300535 GENBANK/AJ300536 GENBANK/AJ300537 GENBANK/AJ300538 GENBANK/AJ300539 GENBANK/AJ300540 GENBANK/AJ300541 GENBANK/AJ300542 GENBANK/AJ300543 GENBANK/AJ300544 GENBANK/AJ300545 GENBANK/AJ300546 GENBANK/AJ300547 GENBANK/AJ300548 GENBANK/AJ300549 GENBANK/AJ300550 GENBANK/AJ300551 GENBANK/AJ300552 GENBANK/AJ300553 GENBANK/AJ300554 Comparative Study DNA Gyrase/*genetics Enterobacteriaceae/*classification/genetics Evolution, Molecular Genes, rRNA Molecular Sequence Data Phenotype RNA, Bacterial/chemistry RNA, Ribosomal, 16S/chemistry
Remarks: Phylogenetic trees showing the evolutionary relatedness of Enterobacteriaceae based upon gyrB and 16S rRNA genes were compared. Congruence among trees of these molecules indicates that the genomes of these species are not completely mosaic and that molecular systematic studies can be carried out. Phylogenetic trees based on gyrB sequences appeared to be more reliable at determining relationships among Serratia species than trees based on 16S rRNA gene sequences. gyrB sequences from Serratia species formed a monophyletic group validated by significant bootstrap values. Serratia fonticola had the most deeply branching gyrB sequence in the Serratia monophyletic group, which was consistent with its atypical phenotypic characteristics. Klebsiella and Enterobacter genera seemed to be polyphyletic, but the branching patterns of gyrB and 16S rRNA gene trees were not congruent. Enterobacter aerogenes was grouped with Klebsiella pneumoniae on the gyrB phylogenetic tree, which supports that this species could be transferred to the Klebsiella genus. Unfortunately, 16S rRNA and gyrB phylogenetic trees gave conflicting evolutionary relationships for Citrobacter freundii because of its unusual gyrB evolutionary process. gyrB lateral gene transfer was suspected for Hafnia alvei. Saturation of gyrB genes was observed by the pairwise comparison of Proteus spp., Providencia alcalifaciens and Morganella morganii sequences. Depending on their level of variability, 16S rRNA gene sequences were useful for describing phylogenetic relationships between distantly related Enterobacteriaceae, whereas gyrB sequence comparison was useful for inferring intra- and some intergeneric relationships.
URL: 21928128
Ref #: 1300
Author(s): Skerman,V.B.D.;McGowan,V.;Sneath,P.H.A.(ed)
Journal: Int. J. Syst. Bacteriol.
Title: Approved Lists of Bacterial Names.
Volume: 30
Page(s): 225-420
Year: 1980
Ref #: 6856
Author(s): Lessel,E.F.
Journal: Int. J. Syst. Bacteriol.
Title: Status of the name Proteus morganii and designation of the neotype strain.
Volume: 21
Page(s): 55-57
Year: 1971
Ref #: 6924
Author(s): DeutschesInstitutfürNormungDIN.NormenausschußMedizin(NAMed)
Title: DIN 58959-7. Qualitätsmanagement in der medizinischen Mikrobiologie. Teil 7: Allgemeine Anforderungen an das Mitführen von Kontrollstämmen. Beiblatt 2: ATCC- und DSM-Nummern häufig verwendeter Kontrollstämme.
Year: 1997
Data: (ATCC 25830, DSM 30164, NCIB 235) Type strain / Lister Institute, London in 1920 / Summer diarrhoea / Morgans No. 1 Bacillus / Morgan, H. de R. (1906) Br. med. J. i, 208
Accession Date: 01/01/1920
Authority: (WINSLOW et al. 1919) FULTON 1943
Depositor: LISTER INSTITUTE
Taxonomy: TaxLink: S4475 (Proteus morganii morganii) - Date of change: 5/02/2003
Biosafety Responsibility: It is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country

Additional Information

Note: Links open in a new window

Note:

The Culture Collections hold cell cultures, bacteria, fungi and virus strains from worldwide sources. Our scientists ensure that the identification of the cultures is correct and they remain unchanged from when they are first deposited with the Collection. Nevertheless, some of the data we provide about the cultures is supplied by the person depositing the strains and, although we have multiple checking procedures in place, we cannot always verify all their data. Please note that the Culture Collections cannot be held responsible for any inaccuracies in the data provided by the depositors.

Cultures supplied by Culture Collections are to be used as controls for microbiology testing and for research purposes only. Please view the Terms & Conditions of Supply for more information.

Contact us if you want to discuss commercial use of the cultures.

Available Formats

Ampoule (Bacteria)

Back to top
Copyright © Public Health England.

Please confirm your country of origin from the list below.